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ABSTRACT  

The closed form expression of disturbance in 

temperature distribution in a rectangular isotropic 

in the presence of two Griffith-cracks opened by 

two exterior wedges is being obtained by the 

principal of cross linear superposition along with 

Fredholm integral equation. It is found that 

temperature distribution at crack tips is smooth. 

Flux possesses Cauchy type of singularity at crack 

tips.  
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I. INTRODUCTION 
We consider the problem of single and 

double Griffith-cracks and got dual and triple series 

equations which were solved by the method of 

Parihar [1]. It is very obvious that will happen if 

there are two Griffith-cracks opened by two 

exterior wedges. As we know this problem will 

reduce to Triple series equation. We consider a 

cross section of three dimensional  body having 

two Griffith-Crack along x-axis and y-axis being 

through two exterior wedges cracks and 

perpendicular to x-axis. Thus we consider a 

rectangle of length  2a and width 2δ. The 

physically problem will be reduced to the following 

boundary value problem for steady case. 
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Where the symmetry of geometry is used. The temperature T satisfy 
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The plan of paper as follows. We will formulate and reduce the problem to triple series equation. The solution of 

triple series equation will be obtained. Further we will solve the physical quantities in term of Fredholm integral 

equation. The solution of Fredholm integral equation will be given in section. 

 

Formulation 

We take the solution of (1.5) and then satisfy the boundary conditions in (1.1) and (1.2) gives 
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The mixed boundary condition gives :- 
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The solution of triple series (2.4)-(2.5) will be given below 

 

Solution of Triple Series 

We assume trial solution as  
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Then substitution of (2.9)-(2.10) into (2.4) satisfies it identically if  
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Thus substituting (2.9) into (2.5) and inverting  
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Where D is arbitrary constant to be determine through (2.11) 
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The (2.13) is called Fredholm integral equation of second kind. 

 

Physical Quantities – Temperature 

The temperature distribution over crack faces is the value of ( ,0)T x for b x c   
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The limits in (3.2)-(3.3) give the values of temperature as it should be . Thus we see that  

temperature distribution is smooth at crack tips. 
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Flux 

Flux cross x-axis is ( ,0)T x and is given as
y
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Now use (2.9) in (3.4) we get 
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Now we evaluate the integral in first term of right hand side of (3.5) after substituting   

the value of g(t) from (2.12)   
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Thus we see the flux possesses the Cauchy type of singularity at crack tips. 

 

Flux Intensity Factor 

The flux intensity factor at crack tips is defined as  
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Now evaluating the limits in (3.10) after using (3.7)- 
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0 2. ( )b
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Where 2 ( ) , ,x x b c  is given by (3.9). 6 ( )P x does not possesses singularity in crack tips.   

In next section we shall consider the special type boundary conditions and solve the  

Fredholm integral equations  

Solution of Fredholm Integral Equation 

Before we solve Fredholm integral equation , we assume the boundary conditions as  
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We approximate ( , ) ( , )M x and K t  as given in (2.16) and (2.15), according to the  

method used by Kushwaha last paper [2]. 
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Then using (4.13)-(4.12) in (2.12) and comparing the coefficients (cos 2 ) , 0,1,2,3rqr r   

only from both sides we get 

0
0 2

( )
( ) ,

( )

t
g t b t c

a t


           4.14 

0 1( ) ( , )t aR G b t D           

 4.14a 

3 1 1

0

, cos
2 2

sin ,
2 2

qc
R R E ec

D
qb

F







   
    

   
   
   
   

       

 4.14b 

2 2

0 1
2 2

( , ) ( , )
,

sin sin
2 2

G b c G b c

qb qc
  

   
   
   

      

 4.14c 

E, F are complete elliptic integrals of First and Second type. 
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It is observed that g(t) depends upon the 

temperature over we wedge and fluc crack faces 

and not on edges parallel to crack axis or the 

temperature over crack axis with 0<x<b. The 

temperature distribution over crack faces is given 

by equation (3.1) and (4.18)Integral can easily be 

written or can easily be evaluated numerically.The 

flux intensity factor at crack tips are given by 

(3.11) and 2 ( )t from (4.18a). 

 

II. DISCUSSION AND CONCLUSION 
It is observed that g(t) depends upon the 

temperature over the wedge and flux upon crack 

faces and not on edges parallel to crack axis or the 

temperature over crack axis with 0 .x b  It is 

observed that the temperature over crack is smooth 

while flux or flux intensity factor will for plastic 

zone in the neighborhood of crack tips. It has also 

Cauchy type of singularity. 
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